CAESAR Implementations & BRUTUS Plans for Protocols

Markku-Juhani O. Saarinen
mjos@iki.fi

https://mjos.fi

FSE’'15 Rump Session - 10March2015 - Istanbul, TURKEY


https://mjos.fi

Background: BRUTUS and CAESAR

A(?Me LES PLUS GRANDS ET TANT que BRUTUS
.. | SerA PRES DE TN, B

CEsAR, Tu NAURAS

RIEN A CRAINDRE /

BRUTUS is a testing framework for 50+ CAESAR ciphers. Implementations are
compiled as dynamically loadable modules; this allows more rapid experimentation
when compared to SUPERCOP (which was intended only for speed tests anyway).


http://eprint.iacr.org/2014/850
https://github.com/mjosaarinen/brutus/

Background: BRUTUS and CAESAR

.u!»«e LES PLUS GRANDS ET TANT que BRUTUS
.. | SerA PRES DE TN, B

CEsAR, Tu NAURAS

RIEN A CRAINDRE /

BRUTUS is a testing framework for 50+ CAESAR ciphers. Implementations are
compiled as dynamically loadable modules; this allows more rapid experimentation
when compared to SUPERCOP (which was intended only for speed tests anyway).

Markku-Juhani O. Saarinen: “‘BRUTUS: Identifying Cryptanalytic Weaknesses in CAESAR
First Round Candidates.” Available at: http://eprint.iacr.org/2014/850

BRUTUS source code available at: https://github. com/mjosaarinen/brutus/


http://eprint.iacr.org/2014/850
https://github.com/mjosaarinen/brutus/

Protip: C does not have garbage collection

Authors of MARBLE, CLOC, SILC, LAC, and POET reference implementations:

Cis not Java. You need to pick up your litter.

These implementations have a bunch of malloc () calls but zero free () calls.



Protip: C does not have garbage collection

Authors of MARBLE, CLOC, SILC, LAC, and POET reference implementations:

Cis not Java. You need to pick up your litter.

These implementations have a bunch of malloc () calls but zero free () calls.

» Thiswill, inthe long run, crash any application using these implementations.
» Memory leakage has far more serious security implications than any cryptanalytic
weakness that MARBLE, CLOC, SILC, LAC, or POET may have.

» Allreasonable implementations of on-line ciphers avoid dynamic memory
allocation altogether since it should not be necessary (think embedded).




You don’t care much about security engineering, but..

What is ..

“byte *res = (byte *)malloc(5+nbytes+adbytes+padbytes);”

. inVerilogor VHDL?



You don’t care much about security engineering, but..

What is ..

“byte *res = (byte *)malloc(5+nbytes+adbytes+padbytes);”

. inVerilogor VHDL?

There is no such thing as dynamic memory in hardware. What’s the HW API?




Additional notes for Reference Implementations (quickly)

» There are little-endian and big-endian computers and your reference code should
give the same results on both (many submissions).

» There are alignment limitations on many platforms — some systems will halt if you
read (big) words from unaligned addresses (many submissions).

» Csource code files have . ¢ suffixand C++ source files have . cpp suffix. If you put
C functions into a . cpp file, linkage will be incompatible (PAEQ, Primates).

» In C, source code and data of functions go into . ¢ files and prototypes and
definitions gointo .h files (SABLIER, ELMD, AES-OTR, SHELL).



Additional notes for Reference Implementations (quickly)

» There are little-endian and big-endian computers and your reference code should
give the same results on both (many submissions).

» There are alignment limitations on many platforms — some systems will halt if you
read (big) words from unaligned addresses (many submissions).

» Csource code files have . ¢ suffixand C++ source files have . cpp suffix. If you put
C functions into a . cpp file, linkage will be incompatible (PAEQ, Primates).

» In C, source code and data of functions go into . ¢ files and prototypes and
definitions gointo .h files (SABLIER, ELMD, AES-OTR, SHELL).

Implementations have to be heavily modified for real life usage w. context structures,
constant-time operation, clearup of sensitive data, etc.. hence:



Additional notes for Reference Implementations (quickly)

» There are little-endian and big-endian computers and your reference code should
give the same results on both (many submissions).

» There are alignment limitations on many platforms — some systems will halt if you
read (big) words from unaligned addresses (many submissions).

» Csource code files have . ¢ suffixand C++ source files have . cpp suffix. If you put
C functions into a . cpp file, linkage will be incompatible (PAEQ, Primates).

» In C, source code and data of functions go into . ¢ files and prototypes and
definitions gointo .h files (SABLIER, ELMD, AES-OTR, SHELL).

Implementations have to be heavily modified for real life usage w. context structures,
constant-time operation, clearup of sensitive data, etc.. hence:
With universal reference implementations, please sacrifice your perceived
performance optimizations for uniform, correct operation on all platforms.



Then there were the total disaster implementations..

"So, avalanche, huh?”

In addition to the mode of operation being equivalent to ECB (whoops), | was
impressed by the O(nz) associated data authentication algorithm. This means that
processing, say, a 64kB message takes 642 = 4096 times longer than a 1 kB message.



Work plan for BRUTUSr2 and further CAESAR Experimentation

» Willupdate BRUTUS with R2 Tweaks.
» Automated KAT validation (now manual).
» Hardware APl integration (already via SAHI).

https://github.com/mjosaarinen/brutus/


https://github.com/mjosaarinen/brutus/

Work plan for BRUTUSr2 and further CAESAR Experimentation

Will update BRUTUS with R2 Tweaks.
Automated KAT validation (now manual).

Hardware APl integration (already via SAHI).
OpenSSL/ LibreSSL / BoringSSL / “JulianSSL”:

» Use the “engine” plugin mechanism for OS
integration. Experiment with protocols.

v

v

v

v

https://github.com/mjosaarinen/brutus/


https://github.com/mjosaarinen/brutus/

Work plan for BRUTUSr2 and further CAESAR Experimentation

Will update BRUTUS with R2 Tweaks.
Automated KAT validation (now manual).
Hardware APl integration (already via SAHI).

OpenSSL/ LibreSSL / BoringSSL / “JulianSSL”:

» Use the “engine” plugin mechanism for OS
integration. Experiment with protocols.
» Thiswill yield realistic performance profiles.

v

v

v

v

https://github.com/mjosaarinen/brutus/


https://github.com/mjosaarinen/brutus/

Work plan for BRUTUSr2 and further CAESAR Experimentation

Will update BRUTUS with R2 Tweaks.
Automated KAT validation (now manual).

v

v

v

Hardware APl integration (already via SAHI).
OpenSSL/ LibreSSL / BoringSSL / “JulianSSL”:

» Use the “engine” plugin mechanism for OS
integration. Experiment with protocols.

» Thiswill yield realistic performance profiles.

» Ultimately integration profiles for TLS, IPSec,
SSH2 protocols as IETF Internet-Drafts.

v

https://github.com/mjosaarinen/brutus/


https://github.com/mjosaarinen/brutus/

Work plan for BRUTUSr2 and further CAESAR Experimentation

» Willupdate BRUTUS with R2 Tweaks.
» Automated KAT validation (now manual).

» Hardware APl integration (already via SAHI).
» OpenSSL/ LibreSSL /BoringSSL /“JulianSSL”:
» Use the “engine” plugin mechanism for OS
integration. Experiment with protocols.
» Thiswill yield realistic performance profiles.
» Ultimately integration profiles for TLS, IPSec,
SSH2 protocols as IETF Internet-Drafts.

» This will be helpful in CAESAR adoption, perhaps
replacing legacy ciphers and AES-GCM by 2020s.
(Or.. If we involve IETF CFRG, perhaps 2030s..)

https://github.com/mjosaarinen/brutus/


https://github.com/mjosaarinen/brutus/

