
CAESAR Implementations & BRUTUS Plans for Protocols
Markku-Juhani O. Saarinen

mjos@iki.fi

https://mjos.fi

FSE ’15 Rump Session – 10March 2015 – Istanbul, TURKEY

1 / 7

https://mjos.fi


Background: BRUTUS and CAESAR

BRUTUS is a testing framework for 50+ CAESAR ciphers. Implementations are
compiled as dynamically loadable modules; this allowsmore rapid experimentation
when compared to SUPERCOP (which was intended only for speed tests anyway).
Markku-Juhani O. Saarinen: “BRUTUS: Identifying Cryptanalytic Weaknesses in CAESAR
First Round Candidates.” Available at: http://eprint.iacr.org/2014/850
BRUTUS source code available at: https://github.com/mjosaarinen/brutus/

2 / 7

http://eprint.iacr.org/2014/850
https://github.com/mjosaarinen/brutus/


Background: BRUTUS and CAESAR

BRUTUS is a testing framework for 50+ CAESAR ciphers. Implementations are
compiled as dynamically loadable modules; this allowsmore rapid experimentation
when compared to SUPERCOP (which was intended only for speed tests anyway).
Markku-Juhani O. Saarinen: “BRUTUS: Identifying Cryptanalytic Weaknesses in CAESAR
First Round Candidates.” Available at: http://eprint.iacr.org/2014/850
BRUTUS source code available at: https://github.com/mjosaarinen/brutus/

2 / 7

http://eprint.iacr.org/2014/850
https://github.com/mjosaarinen/brutus/


Protip: C does not have garbage collection

Authors ofMARBLE,CLOC, SILC, LAC, and POET reference implementations:
C is not Java. You need to pick up your litter.

These implementations have a bunch of malloc() calls but zero free() calls.

▶ Thiswill, in the long run, crash any application using these implementations.
▶ Memory leakage has far more serious security implications than any cryptanalytic

weakness thatMARBLE,CLOC, SILC, LAC, or POETmay have.
▶ All reasonable implementations of on-line ciphers avoid dynamic memory

allocation altogether since it should not be necessary (think embedded).

3 / 7



Protip: C does not have garbage collection

Authors ofMARBLE,CLOC, SILC, LAC, and POET reference implementations:
C is not Java. You need to pick up your litter.

These implementations have a bunch of malloc() calls but zero free() calls.

▶ Thiswill, in the long run, crash any application using these implementations.
▶ Memory leakage has far more serious security implications than any cryptanalytic

weakness thatMARBLE,CLOC, SILC, LAC, or POETmay have.
▶ All reasonable implementations of on-line ciphers avoid dynamic memory

allocation altogether since it should not be necessary (think embedded).

3 / 7



You don’t caremuch about security engineering, but..

What is ..
“ byte *res = (byte *)malloc(5+nbytes+adbytes+padbytes);”

.. in Verilog or VHDL ?
There is no such thing as dynamic memory in hardware. What’s the HWAPI?

4 / 7



You don’t caremuch about security engineering, but..

What is ..
“ byte *res = (byte *)malloc(5+nbytes+adbytes+padbytes);”

.. in Verilog or VHDL ?
There is no such thing as dynamic memory in hardware. What’s the HWAPI?

4 / 7



Additional notes for Reference Implementations (quickly)
▶ There are little-endian and big-endian computers and your reference code should

give the same results on both (many submissions).
▶ There are alignment limitations onmany platforms – some systems will halt if you

read (big) words from unaligned addresses (many submissions).
▶ C source code files have .c suffix and C++ source files have .cpp suffix. If you put

C functions into a .cpp file, linkage will be incompatible (PAEQ, Primates).
▶ In C, source code and data of functions go into .c files and prototypes and

definitions go into .h files (SABLIER, ELMD,AES-OTR, SHELL).

Implementations have to be heavily modified for real life usage w. context structures,
constant-time operation, clearup of sensitive data, etc.. hence:

With universal reference implementations, please sacrifice your perceived
performance optimizations for uniform, correct operation on all platforms.

5 / 7



Additional notes for Reference Implementations (quickly)
▶ There are little-endian and big-endian computers and your reference code should

give the same results on both (many submissions).
▶ There are alignment limitations onmany platforms – some systems will halt if you

read (big) words from unaligned addresses (many submissions).
▶ C source code files have .c suffix and C++ source files have .cpp suffix. If you put

C functions into a .cpp file, linkage will be incompatible (PAEQ, Primates).
▶ In C, source code and data of functions go into .c files and prototypes and

definitions go into .h files (SABLIER, ELMD,AES-OTR, SHELL).

Implementations have to be heavily modified for real life usage w. context structures,
constant-time operation, clearup of sensitive data, etc.. hence:

With universal reference implementations, please sacrifice your perceived
performance optimizations for uniform, correct operation on all platforms.

5 / 7



Additional notes for Reference Implementations (quickly)
▶ There are little-endian and big-endian computers and your reference code should

give the same results on both (many submissions).
▶ There are alignment limitations onmany platforms – some systems will halt if you

read (big) words from unaligned addresses (many submissions).
▶ C source code files have .c suffix and C++ source files have .cpp suffix. If you put

C functions into a .cpp file, linkage will be incompatible (PAEQ, Primates).
▶ In C, source code and data of functions go into .c files and prototypes and

definitions go into .h files (SABLIER, ELMD,AES-OTR, SHELL).

Implementations have to be heavily modified for real life usage w. context structures,
constant-time operation, clearup of sensitive data, etc.. hence:

With universal reference implementations, please sacrifice your perceived
performance optimizations for uniform, correct operation on all platforms.

5 / 7



Then there were the total disaster implementations..

In addition to themode of operation being equivalent to ECB (whoops), I was
impressed by theO(n2) associated data authentication algorithm. This means that

processing, say, a 64kBmessage takes 642 = 4096 times longer than a 1 kBmessage.
6 / 7



Work plan for BRUTUSr2 and further CAESAR Experimentation
▶ Will update BRUTUSwith R2 Tweaks.
▶ Automated KAT validation (nowmanual).
▶ Hardware API integration (already via SÆHI).
▶ OpenSSL / LibreSSL / BoringSSL / “JulianSSL”:

▶ Use the “engine” plugin mechanism for OS
integration. Experiment with protocols.

▶ This will yield realistic performance profiles.
▶ Ultimately integration profiles for TLS, IPSec,

SSH2 protocols as IETF Internet-Drafts.
▶ This will be helpful in CAESAR adoption, perhaps

replacing legacy ciphers and AES-GCMby 2020s.
(Or.. If we involve IETF CFRG, perhaps 2030s..)

https://github.com/mjosaarinen/brutus/

7 / 7

https://github.com/mjosaarinen/brutus/


Work plan for BRUTUSr2 and further CAESAR Experimentation
▶ Will update BRUTUSwith R2 Tweaks.
▶ Automated KAT validation (nowmanual).
▶ Hardware API integration (already via SÆHI).
▶ OpenSSL / LibreSSL / BoringSSL / “JulianSSL”:

▶ Use the “engine” plugin mechanism for OS
integration. Experiment with protocols.

▶ This will yield realistic performance profiles.
▶ Ultimately integration profiles for TLS, IPSec,

SSH2 protocols as IETF Internet-Drafts.
▶ This will be helpful in CAESAR adoption, perhaps

replacing legacy ciphers and AES-GCMby 2020s.
(Or.. If we involve IETF CFRG, perhaps 2030s..)

https://github.com/mjosaarinen/brutus/

7 / 7

https://github.com/mjosaarinen/brutus/


Work plan for BRUTUSr2 and further CAESAR Experimentation
▶ Will update BRUTUSwith R2 Tweaks.
▶ Automated KAT validation (nowmanual).
▶ Hardware API integration (already via SÆHI).
▶ OpenSSL / LibreSSL / BoringSSL / “JulianSSL”:

▶ Use the “engine” plugin mechanism for OS
integration. Experiment with protocols.

▶ This will yield realistic performance profiles.
▶ Ultimately integration profiles for TLS, IPSec,

SSH2 protocols as IETF Internet-Drafts.
▶ This will be helpful in CAESAR adoption, perhaps

replacing legacy ciphers and AES-GCMby 2020s.
(Or.. If we involve IETF CFRG, perhaps 2030s..)

https://github.com/mjosaarinen/brutus/

7 / 7

https://github.com/mjosaarinen/brutus/


Work plan for BRUTUSr2 and further CAESAR Experimentation
▶ Will update BRUTUSwith R2 Tweaks.
▶ Automated KAT validation (nowmanual).
▶ Hardware API integration (already via SÆHI).
▶ OpenSSL / LibreSSL / BoringSSL / “JulianSSL”:

▶ Use the “engine” plugin mechanism for OS
integration. Experiment with protocols.

▶ This will yield realistic performance profiles.
▶ Ultimately integration profiles for TLS, IPSec,

SSH2 protocols as IETF Internet-Drafts.
▶ This will be helpful in CAESAR adoption, perhaps

replacing legacy ciphers and AES-GCMby 2020s.
(Or.. If we involve IETF CFRG, perhaps 2030s..)

https://github.com/mjosaarinen/brutus/

7 / 7

https://github.com/mjosaarinen/brutus/


Work plan for BRUTUSr2 and further CAESAR Experimentation
▶ Will update BRUTUSwith R2 Tweaks.
▶ Automated KAT validation (nowmanual).
▶ Hardware API integration (already via SÆHI).
▶ OpenSSL / LibreSSL / BoringSSL / “JulianSSL”:

▶ Use the “engine” plugin mechanism for OS
integration. Experiment with protocols.

▶ This will yield realistic performance profiles.
▶ Ultimately integration profiles for TLS, IPSec,

SSH2 protocols as IETF Internet-Drafts.
▶ This will be helpful in CAESAR adoption, perhaps

replacing legacy ciphers and AES-GCMby 2020s.
(Or.. If we involve IETF CFRG, perhaps 2030s..)

https://github.com/mjosaarinen/brutus/

7 / 7

https://github.com/mjosaarinen/brutus/

